Trade with Firm-to-Firm Relationships: Identifying New Gains and Losses from Trade

Tomohiro Ara


Fukushima University

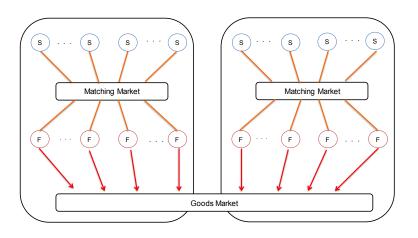
November 15, 2025 @ Midwest Fall 2025

Motivation

- Firms often search for suppliers to procure specialized inputs:
 - While a few core inputs are made in-house, other non-core inputs are largely purchased from outside suppliers
 - IT revolution makes it easier to search for suppliers not only within borders but also across borders
 - Access to a wide range of outsourced inputs improves production technology of firms
 - ⇒ Consider Apple's sourcing strategy

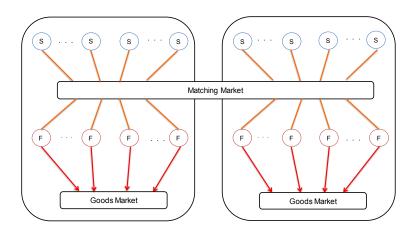
Motivation

⇒ Firm-to-firm relationships may seriously affect welfare


Key results

- Question
 - How and why does the formation of firm-to-firm relationships affect the welfare gains and losses from trade?
- Answers
 - Welfare changes are computed as

$$d\ln W = -\frac{1}{\varepsilon} \left(d\ln s - d\ln u^F \right)$$


- s is the expenditure share on goods produced by unmatched firms
- u^F is the mass of unmatched firms
- Welfare gains and losses depend on whether trade integrates goods markets or matching markets across countries

Key results

Goods market integration ⇒ Welfare gains are amplified

Key results

Matching market integration \Rightarrow Welfare losses may occur

Related literature

- Key assumptions:
 - Firms and suppliers randomly match and bargain over generated surplus (Felbermayr et al., 2011; Arkolakis et al., 2025)
 - Firms and suppliers have one-to-one relationships in their search process (Krolikowski and McCallum, 2021; Sugita et al., 2021)
 - Matched firms can enjoy a love-of-variety effect from an input expansion (Ethier, 1982; Halpern et al., 2015)

Outline of this talk

- Setup
 - Homogeneous firm model (Krugman, 1980) with search and matching
 - Firm-to-firm relationships increase productivity
- Goods market integration
 - X-integration hereafter
 - New welfare channels
- Calibration
 - Quantify the effects of firm-to-firm relationships
 - Quantitative departures from ACR

• Consumer preferences:

$$U = \left(\int_{\omega} y(\omega)^{\frac{\sigma-1}{\sigma}} d\omega\right)^{\frac{\sigma}{\sigma-1}}, \quad \sigma > 1$$

• Demand and expenditure for variety ω :

$$y(\omega) = Ap(\omega)^{-\sigma}$$
$$r(\omega) = Ap(\omega)^{1-\sigma}$$

where A is the index of industry demand

Firm technology:

$$y(\omega) = \left((x^{\mathsf{F}}(\omega))^{\frac{\sigma-1}{\sigma}} + \mathbb{1}(\omega)(x^{\mathsf{S}}(\omega))^{\frac{\sigma-1}{\sigma}} \right)^{\frac{\sigma}{\sigma-1}}$$

where both inputs are produced competitively

• Firm unit cost:

$$c(\omega) = \left((wa^F)^{1-\sigma} + \mathbb{1}(\omega)(wa^S)^{1-\sigma} \right)^{\frac{1}{1-\sigma}} = \frac{wa^F}{\varphi(\omega)}$$

where

$$arphi(\omega) \equiv \left(1 + \mathbb{1}(\omega) \left(rac{ extbf{\textit{a}}^{ extit{\textit{F}}}}{ extbf{\textit{a}}^{ extit{\textit{S}}}}
ight)^{\sigma-1}
ight)^{rac{1}{\sigma-1}}$$

Profit-maximization problem:

$$\max_{\boldsymbol{x}^F(\omega),\,\boldsymbol{x}^S(\omega)} \ r(\omega) - w\boldsymbol{a}^F\boldsymbol{x}^F(\omega) - \mathbb{1}(\omega)w\boldsymbol{a}^S\boldsymbol{x}^S(\omega) - \mathbb{1}(\omega)w(\boldsymbol{f}^F + \boldsymbol{f}^S)$$

• Optimal pricing, revenue and profit:

$$p(\varphi) = \frac{\sigma}{\sigma - 1} \frac{wa^F}{\varphi}$$

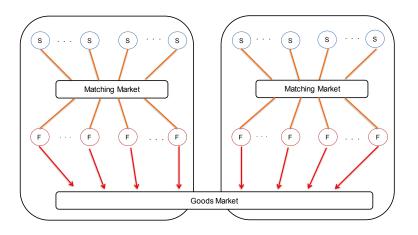
$$r(\varphi) = A \left(\frac{\sigma - 1}{\sigma} \frac{\varphi}{wa^F}\right)^{\sigma - 1}$$

$$\pi(\varphi) = \frac{r(\varphi)}{\sigma} - \mathbb{1}(\varphi)wf$$

where $f \equiv f^F + f^S$

Matching function:

$$m(u^F, u^S)$$


which satisfies CRS in matching

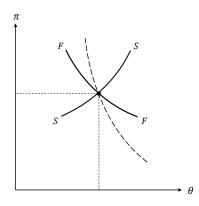
• Probability of matches:

$$\begin{split} \mu^F &\equiv m(u^F,u^S)/u^F = m(1,\theta) \\ \mu^S &\equiv m(u^F,u^S)/u^S = m(1/\theta,1) = \mu^F/\theta \end{split}$$

where $\theta \equiv u^S/u^F$

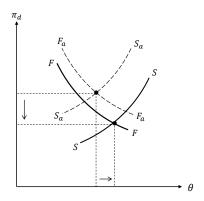
• One-to-one matching: $N^F - u^F = N^S - u^S \equiv N^S - u^S$

Depending on trade costs, unmatched firms can or cannot export


 When both matched and unmatched firms export, the free entry condition of firms and suppliers are, respectively, written as

$$\pi - f_{x} + \frac{n}{N^{F}} \beta \left(\pi(\varphi) - \pi \right) = f_{e}^{F}$$

$$\frac{n}{N^{S}} (1 - \beta) \left(\pi(\varphi) - \pi \right) = f_{e}^{S}$$


where

- π : unmatched profit
- $\pi(\varphi)$: matched profit
- $\pi(\varphi) \pi$: surplus generated by matches

$$\theta = u^{S}/u^{F} = (N^{S} - n)/(N^{F} - n)$$

- FF curve $\theta \uparrow \Rightarrow \ \mu^F \uparrow \Rightarrow \ \pi \downarrow$
- SS curve $\theta \uparrow \Rightarrow \mu^S \downarrow \Rightarrow \pi \uparrow$
- θ and π are consistent with free entry in X-integration equilibrium

- Matched firms get a larger surplus in X-integration, inducing new entry
- Impact of X-integration

$$\pi < \pi_{\mathsf{a}}$$
 $heta > heta_{\mathsf{a}}$

- Gains from trade (GFT) in X-integration:
 - $\pi < \pi_a \Longrightarrow$ Resources are reallocated from (inefficient) unmatched firms to (efficient) matched firms
 - ② $\theta > \theta_a \Longrightarrow$ Firms have the higher probability to meet suppliers, enhancing overall production efficiency of the industry

- Sufficient statistics for welfare:
 - Trade elasticity

$$arepsilon \equiv -rac{\partial \ln(R_{ ext{x}}/R_{ ext{d}})}{\partial \ln au_{ ext{x}}} = \sigma - 1$$

Domestic expenditure share

$$\lambda \equiv \frac{R_d}{R} = \frac{1}{1 + \tau_x^{1 - \sigma}}$$

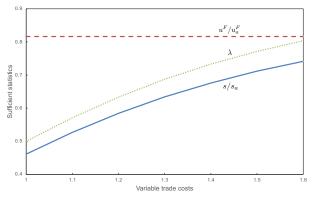
Domestic unmatched expenditure share

$$s \equiv \frac{(N^F - n)r_d}{R} = \frac{1}{\left(1 + \tau_x^{1 - \sigma}\right) \left(1 + \varphi^{\sigma - 1}\mu^F/\delta\right)}$$

• Welfare changes in X-integration are computed as

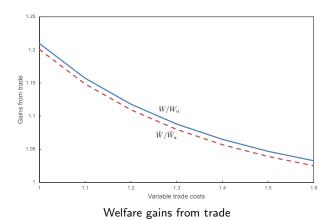
$$d \ln W = -\frac{1}{\varepsilon} \left(d \ln s - d \ln u^F \right)$$

- Without firm-to-firm relationships, $s=\lambda$ and $u^F=N^F(=L/\sigma f_e^F)$, the changes are $d \ln W=-d \ln \lambda/\varepsilon$ (Arkolakis et al., 2012)
- With firm-to-firm relationships, $d \ln s < d \ln \lambda$ and $d \ln u^F \leq 0$, and the changes are amplified by such relationships
- Takeaway: In search and matching, we need to use variables of unmatched firms


Calibration

• Firms and suppliers meet through the following matching function

$$m(u^F, u^S) = \left(\left(u^F\right)^{-\iota} + \left(u^S\right)^{-\iota}\right)^{-1/\iota}$$


- Market tightness u^F/u^S is 0.66 and matching elasticity ι is 0.45 \Rightarrow $\mu^F=0.26, \,\mu^S=0.17$ (Heise, 2024)
- Imported inputs increase firm productivity by about 25 percent $\Rightarrow \varphi = 1.25$ (Halpern et al., 2015)
- ullet Standard values based on central estimates of US data, e.g., $\sigma=$ 4, $au_{\scriptscriptstyle X}=1.6$

Calibration

Sufficient statistics for welfare

Calibration

Summary

- Key messages:
 - With firm-to-firm relationships, welfare changes can be computed by sufficient statistics of unmatched agents
 - Whether such relationships affect welfare gains or losses depends on wether trade integrates goods markets or matching markets