Trade Elasticities and Gains from Trade under Vertical Oligopoly

Tomohiro Ara¹ Arpita Chatterjee² Arghya Ghosh³ Hongyong Zhang⁴

¹Fukushima University

² Federal Reserve Board

³University of New South Wales

⁴RIFTI

February 22, 2025 © Fukushima University

Outline of this talk

- Motivation
- Model:
 - Vertical oligopoly with free entry
 - Effect of trade costs on trade flows and welfare gains
- Suggestive evidence:
 - Mapping from theory to empirics
 - Preliminary estimation results
- Summary

- Recent years have witnessed faster growth of intermediate inputs in world trade volume:
 - Vertical specialization
 - Global value chains (GVCs)
- In analyzing fragmentation of production processes:
 - Most work ⇒ Bilateral negotiations in buyer-seller contractual relationships (e.g., Pol Antràs' work)
 - This paper ⇒ Market-based transactions among buyers and sellers (i.e., non-contractual relationships)

- Two features of market-based transactions:
 - (i) Strategic interactions among large firms (Head and Spencer, 2017)
 - Only a few large firms participate in international trade
 - Markets are becoming more concentrated toward these firms over time
 - (ii) Increasing interdependencies across countries (Antràs et al., 2025)
 - Trade policy shocks can lead to similar effects on countries involved in GVCs
 - Trade shocks have a complementary force on the extensive margin
- Most papers in the GVC literature consider perfectly competitive firms (e.g., Antràs and de Gortari, 2020; Johnson and Moxnes, 2023)

Ten most concentrated industries in China, 1998

CIC	Industry description	ННІ	Upstreamness
4039	Applied TV equipment and other audio-video equipment	0.681	2.584
4127	Nucleon and nuclear radiation measuring apparatus manuf.	0.609	3.060
3313	Nickel cobalt smelting	0.573	4.877
4159	Other stationary and office machine manufacturing	0.527	3.060
3759	Navigation mark and other floating equipment manuf.	0.517	2.617
4124	Meter apparatus for forming, forestry and fishing manuf.	0.516	3.666
2433	Electronic musical instrument	0.479	2.781
3723	Trolley manufacturing	0.457	2.953
2413	Teaching specimen and mode	0.441	2.781
4152	Slide projector and overhead projector manuf.	0.396	3.060
		0.519	3.144

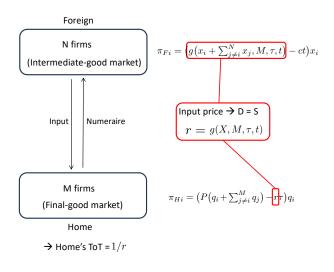
Source: Authors' calculations

Note: HHI and upstreamness are taken from China's annual survey of industrial firms and Chor et al. (2021), respectively. The median HHI is 0.03 in this year.

- Research question:
 - What is the effect of trade costs on trade flows and welfare when vertically related sectors are oligopolistic?
- Main findings:
 - The trade elasticity is greater, the more oligopolistic the vertically related sectors
 - The welfare effect of trade liberalization is also greater, the more oligopolistic the vertically related sectors
 - ⇒ The amplified effect arises from co-movement of firms in each sector (absent in perfect competition)

• Home consumers:

$$U=U(Q)+y$$

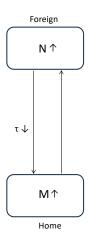

• Inverse demand:

$$P(Q) = AQ^{-1/\sigma}, \quad \sigma > 1$$

• Elasticity and curvature of demand:

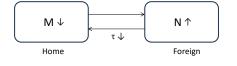
$$\varepsilon \equiv -\frac{P(Q)}{QP'(Q)} = \sigma$$
$$\rho \equiv \frac{QP''(Q)}{P'(Q)} = -\left(\frac{\sigma+1}{\sigma}\right)$$

where $-2 < \rho < -1$ (c.f., Mrázová and Neary, 2017)


- Equilibrium conditions:
 - First-order condition

$$MP(Q) + QP'(Q) = Mr\tau \implies Q$$

 $Ng(X, M, \tau, t) + Xg_X(X, M, \tau, t) = Nct \implies X$


Free-entry condition

$$\frac{(P - r\tau)Q}{M} = K_H \implies M$$
$$\frac{(r - ct)X}{N} = K_F \implies N$$

- Trade margins:
 - Extensive margin $\Rightarrow M, N$
 - Intensive margin $\Rightarrow q = \frac{Q}{M}, x = \frac{X}{N}$

- Vertical specialization ⇒ Co-movement
- Tariff reductions induce some firms to enter the Home market, as each country produces goods with complements

- Horizontal specialization ⇒ Delocation (e.g., Bagwell and Staiger, 2012)
- Tariff reductions induce some firms to exit the Home market, as each country produces goods with substitutes

Proposition (Trade elasticities)

The effect of import tariffs on aggregate imports

$$\frac{dQ}{d\tau} = \underbrace{\frac{\partial Q}{\partial \tau}}_{<0} + \underbrace{\frac{\partial Q}{\partial M} \frac{dM}{d\tau}}_{<0} + \underbrace{\frac{\partial Q}{\partial N} \frac{dN}{d\tau}}_{<0} < 0$$

- \Rightarrow Second and third terms capture co-movement of firms
- 2 The trade elasticity with respect to import tariffs

$$heta \equiv -rac{d \ln Q}{d \ln au} = \sigma \mu(M, N, \sigma)$$

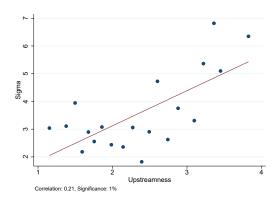
- (i) $\mu(\infty, \infty, \sigma) = 1 \Rightarrow \theta = \sigma$ in perfectly competitive sectors
- (ii) $\mu(M, N, \sigma) > 1 \Rightarrow \theta > \sigma$ in oligopolistic sectors
- The trade elasticity with respect to transport costs

$$\vartheta \equiv -\frac{d \ln X}{d \ln t} = (\sigma - 1)\eta(M, N, \sigma)$$

 $\Rightarrow \eta(.)$ has the same property as $\mu(.)$

Proposition (Welfare gains)

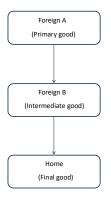
1 The effect of import tariffs on Home's ToT

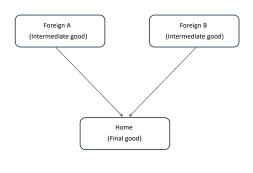

$$\frac{dr}{d\tau} = \underbrace{\frac{\partial r}{\partial \tau}}_{\leq 0} + \underbrace{g_X(X, M, \tau, t) \frac{\partial X}{\partial N} \frac{dN}{d\tau}}_{> 0} > 0$$

- ⇒ Imposition of tariffs worsens Home's ToT
- 2 The effect of import tariffs on Home welfare

$$\frac{dW}{d\tau} = \underbrace{\frac{\partial W}{\partial \tau}}_{<0} + \underbrace{\left(P(Q) - r\right)\left(\frac{\partial X}{\partial M}\frac{dM}{d\tau} + \frac{\partial X}{\partial N}\frac{dN}{d\tau}\right)}_{<0} - \underbrace{Q\frac{dr}{d\tau}}_{>0} < 0$$

⇒ Second and third terms capture co-movement of firms


- Possible empirical test of our model:
 - ⇒ The trade elasticity is larger in more oligopolistic sectors
- Main empirical test of Antràs and de Gortari (2020):
 - ⇒ The trade elasticity is larger in more downstream sectors
- As downstream sectors are typically uncompetitive (Antràs and Chor, 2022), the two findings are similar, with the main difference being:
 - Our paper ⇒ *Oligopolistic* competition
 - Antràs and de Gortari (2020) ⇒ Perfect competition


Source: Authors' calculations

Note: The vertical and horizontal axes are measured by the import demand elasticity and upstreamness presented by Brora and Weinstein (2006) and Antràs et al. (2012), respectively

• Mapping from theory to empirics:

(a) Sequential production

(b) Simultaneous production

- Mapping from theory to empirics:
 - To avoid the compounding effect by Antràs and de Gortari (2020), we restrict our attention to (III) and (IV) in the table
 - We expect that the trade elasticity is larger for (IV) than for (III)

	Competitive	Uncompetitive
Upstream	Competitive upstream goods	Uncompetitive upstream goods
	(1)	(II)
Downstream	Competitive downstream goods	Uncompetitive downstream goods
	(III)	(IV)

- Imports data:
 - China Customs 2000–2007
 - Firm-product (HS 6-digit)-source country-level import transactions
 - Aggregate to HS 6-digit level imports
 - Ordinary imports only in main estimations
 - Calculate HHI and the number of importers at the HS 6-digit level
- Tariffs data:
 - UNCTAD TRAINS
 - HS 6-digit level applied tariffs, China, 2000–2007
 - Price equivalent transformation log(tariff+1)

Summary statistics:

Variable	n	Mean	S.D.	Min	0.25	Mdn	0.75	Max
log(Imports value)	37,508	6.7	3.19	-6.91	4.64	6.98	9	17.83
Tariffs (%)	37,425	11.84	8.99	0	6	10	15.5	121.6
Upstreamness	37,375	2.32	0.91	1	1.44	2.36	3.11	4.65
Sigma	37,122	6.03	10.72	1.34	2.77	3.64	5.31	108.19
HHI	37,508	0.33	0.28	0	0.11	0.23	0.47	1
Number of importers	37,508	122.47	365.51	1	8	26	84	11695
Intermediate goods dummy	37,508	0.62	0.48	0	0	1	1	1

Note: "Competitiveness" of goods is mainly measured by Sigma (import demand elasticity) and HHI below

Upstreamness and Sigma:

Dep. Var.: log(Imports)	(1)	(2)	(3)	(4)	
Samples:	Upstream &	Upstream &	Downstream	Downstream	
Samples.	high-sigma	low-sigma	& high-sigma	& low-sigma	
log(Tariff+1)	0.0863	-0.329 -2.588***		-2.368***	
	(0.677)	(1.126)	(0.831)	(0.652)	
Product FE	Yes	Yes	Yes	Yes	
Year FE	Yes	Yes	Yes	Yes	
N	11613	7094	7259	11400	
adj. R-sq	0.868	0.851	0.850	0.891	

Note: Product FE and year FE are included in all columns. Standard errors are clustered at the product level. Significance levels: *0.10 ** 0.05 *** 0.01.

Upstreamness and HHI:

Dep. Var.: log(Imports)	(1)	(2)	(3)	(4)	
Samples:	Upstream &	Upstream &	Downstream	Downstream	
Samples.	high-HHI	low-HHI	& high-HHI	& low-HHI	
log(Tariff+1)	0.567	-0.651 -2.813***		-1.915***	
	(0.949)	(0.461)	(0.795)	(0.467)	
Product FE	Yes	Yes	Yes	Yes	
Year FE	Yes	Yes	Yes	Yes	
N	8784	9464	9624	8601	
adj. R-sq	0.754	0.936	0.784	0.949	

Note: Product FE and year FE are included in all columns. Standard errors are clustered at the product level. Significance levels: *0.10 **0.05 **** 0.01.

Summary

- Key contributions:
 - Examine the effect of trade costs when the vertically related sectors are oligopolistic
 - Provide novel theoretical and empirical findings under vertical oligopoly
 - Better understanding of the mechanism through which trade costs can affect vertical specialization in the presence of large firms
 - Suggestive evidence on the trade elasticity consistent with the model

References

Antràs P, Chor D. 2022. Global Value Chains. *Handbook of International Economics*, Volume 5, Elsevier: North Holland, 297-376.

Antràs P, Chor D, Fally T, Hillberry R. 2012. Measuring the Upstreaamness of Production and Trade Flows. American Economic Review Papers and Proceedings, 102, 412-416.

Antràs P, de Gortari A. 2020. On the Geography of Global Value Chains. Econometrica, 88, 1553-1598.

Antràs P, Fadeev E, Fort T, Tintelnot F. 2025. Exporting, Global Sourcing, and Multinational Activity: Theory and Evidence from the United States. *Review of Economics and Statistics*. forthcoming.

Bagwell K, Staiger RW. 2012. The Economics of Trade Agreements in the Linear Cournot Delocation Model. *Journal of International Economics*, 88, 32-46.

Broda C, Weinstein D. 2006. Globalization and the Gains from Variety. Quarterly Journal of Economics, 121, 541-585.

Chor D, Manova K, Yu Z. 2021. Growing like China: Firm Performance and Global Production Line Position. *Journal of International Economics*, 130, 103445.

Head K, Spencer JB. 2017. Oligopoly in International Trade: Rise, Fall and Resurgence. Canadian Journal of Economics, 50, 1414-1444.

Johnson RC, Moxnes A. 2023. GVCs and Trade Elasticities with Multistage Production. *Journal of International Economics*, 145, 103796.

Mrázová M, Neary JP. 2017. Not So Demanding: Demand Structure and Firm Behavior. American Economic Review, 107, 3835-3874.